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Supplementary Note 1: Tight-binding description of the photonic crystals  

The photonic crystals considered in the main text could be described by a tight-binding (TB) Hamiltonian 

defined on the honeycomb lattice, and we consider the hexagonal unit cell that contains six lattice sites, 
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where 0t , 1t > 0 represent the nearest-neighbor (NN) hopping strengths within and between the hexagonal 

unit cells 1-3. Moreover, to account for the change of R2, one can introduce the next-next-nearest (NNN) 

hopping term4 
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Where 2t represent the next-next-nearest (NNN) hopping strengths within the hexagonal unit cells. 

 
Figure S1 | Schematic of photonic crystals in graphene-like lattice and photonic band structures. a Schematic of photonic 

crystals in graphene-like lattice, where 1a and 2a
 

denote the lattice vectors with a  the lattice constant. Red arrows among sites 

2, 4, and 6 denote the next-next-nearest (NNN) hopping within the hexagonal unit cell. b Schematic of 5 C  heterostructure. The 

domains A, B and C are composed of different unit cells ( 1 23, 3.5R a R a= =  ; 1 23, 3R a R a= =  ; 1 23, 2.65R a R a= =  ) 

respectively. c The photonic band structures for PhCs of the three domains shown in b. The bottom panel denotes the mode profiles 

at   for p ( d ) and d ( p ) states of trivial (nontrivial) PhCs. d Evolution of the band gap as a function of 2R . The green and red 

dotted lines represent p and d states, respectively. 

 



Supplementary Note 2: Projected band structures along the wavevector kx for Cx   

Figure S2 shows the projected band structures of the heterostructure Cx  as a function of x from 0x =  

(without the middle domain B) to 11x = . Note that the dispersion curves of the topological waveguide 

modes (red lines) gradually evolve into an “X” shape as x   increases, whereas non-topological 

waveguide modes (blue lines) gradually move from the bulk states (black regions) into the band gap but 

in general are gapped (see Figure S2b-g). As a result, operational bandwidth of the topological waveguide 

modes gradually decreases. This is because the coupling of the interface modes at A|B and B|C domain-

walls become weaker as x increases, and as such more and more non-topological waveguide modes 

populate within the band gap. From Fig.S2, we can see that when x is small the coupling of the interface 

modes at A|B and B|C domain-walls is strong, resulting in a wide gap marked by the light orange region 

and when x  is large, the coupling becomes weaker, i.e., the orange band gap becomes smaller, and more 

non-topological waveguide modes (blue lines) from the bulk states gradually move into the bulk gap 

marked by two dashed lines.  

 

Figure S2 | Projected band structures of Cx  for x =0, 1, 3, 5, 7, 9 and 11. a-g Projected band structures, where black regions 

denote bulk states and red lines denote the topological large-area helical waveguide modes, whereas blue lines denote non-

topological waveguide modes moving from bulk states into the band gap.  

 

Supplementary Note3: Topological and non-topological waveguide modes in 5 C   

The heterostructure can support both topological and non-topological waveguide modes (see the blue and 

red dotted lines in Fig.S3a), however, their topological properties are very different, even though their 

field profiles show similar feature, i.e., their fields are distributed uniformly in the middle domain B and 

decay exponentially into domains A and C (see right panels of Fig. S3a, for the cases of non-topological 

modes). To demonstrate that the blue waveguide modes do not have topological properties, we excite these 

waveguide states using different polarized chiral sources, and the results in Figs. S3b-e show that they 

propagate in both directions no matter with straight or Z-shaped waveguide channel, indicating the lack 

of topological property with pseudospin-momentum-locking unidirectional propagations. In contrast, for 

the red waveguide states, the results in Figs.S3f-g show that they can be excited (by a chiral source) and 

propagate unidirectionally in the Z-shaped waveguide channel even with sharp bends, indicating the 

existence of topological property of these modes, such as pseudospin-momentum-locking unidirectional 

propagations and robustness against sharp bends.  



 

Figure S3 | Projected band structure of 5 C  and its waveguide modes. a Projected band structure of 5 C  (left), whereas 

right two panels show the modes profiles ( ZE ) of the non-topological waveguide modes at different eigenfrequencies marked by 

the green and yellow dots. b-e Excited non-topological waveguide states in 5 C  with straight and Z-shaped waveguide channels 

for different polarized chiral sources. f, g Excited topological waveguide modes in 5 C  with Z-shaped waveguide channel for 

different polarized chiral sources. 

Supplementary Note 4: No topological waveguide modes in 5    

It is crucial that the outer two domains A and C have different topological properties in order for the 

heterostructure to support large-area pseudospin-momentum locking topological waveguide modes.  To 

demonstrate this, we further study the projected band diagram of 5   , in which the two domains at each 

side of the middle domain B are the same and thus have the same topological property, i.e., the difference 

of their topological invariants across the middle domain is trivial. The projected band diagram of 5    

is shown in Fig. S4a, from which one can clearly see that the helical waveguide states are absent, and 

only gapped conventional waveguide states exist within the band gap. From the excited wave propagations 

shown in Figs.S4b-c, one can see that these are indeed waveguide modes but without the topological 

property of pseudospin-momentum locking unidirectional propagation.  

 

Figure S4 | Projected band structure of 5   and its waveguide states. a Projected band structure of 5   (left), whereas 

right two panels denote mode profiles ( ZE ) of the non-topological waveguide modes at different eigenfrequencies marked by the 

green and yellow dots. b,c Excited non-topological waveguide states in a straight waveguide channel for different polarized chiral 

sources. 

Supplementary Note 5: Waveguide modes in 5C C  

Similar results as 5  
 

are also obtained in 
5C C , see Fig.S5. 



 
Figure S5 | Projected band structure of 5C B C and its waveguide states. a Projected band structure of 5C B C (left), whereas 

right two panels denote mode profiles ( ZE ) of the non-topological waveguide modes at different eigenfrequencies marked by the 

green and yellow dots. b, c Excited non-topological waveguide states in a Z-shaped waveguide channel for different polarized chiral 

sources. 

Supplementary Note 6: Non-topological waveguide modes in air C  

To demonstrate that the middle domain B with gapless Dirac cone dispersion is also important for the 

heterostructure to support large-area pseudospin-momentum locking topological waveguide modes, we 

study the projected band diagram of air C , where the middle domain B is replaced by air. From the result 

shown in Fig.S6a, one can see that there is a pair of waveguides modes within the bandgap, which however 

is different from those of ( Cx  , 5C B C , 5   ). Note that the field profiles of these modes are also 

distributed mainly within the air and decay exponentially into domains A and C by checking the waveguide 

modes labelled as green and yellow dots. However, from the excited wave propagations shown in 

Figs.S6b-c, one can see that these are conventional waveguide states without any topological properties. 

These results demonstrate that the large-area pseudospin-momentum locking topological waveguide 

modes originate from the interplay of domains A and C with pseudospin band inversion and domain B 

with gapless double Dirac-cone dispersion. In contrast to air, the presence of a gapless Dirac cone 

dispersion in the middle domain is crucial, which allows the strong coupling and hybridization of the two 

topological interface modes associated with A|B and B|C domain-walls. 

 

Figure S6 | Projected band structure of air C and its waveguide states. a Projected band structure of air C (left), whereas 

right two panels denote mode profiles ( ZE ) of the non-topological waveguide modes at different eigenfrequencies marked by the 

green and yellow dots. b, c Excited non-topological waveguide states in a Z-shaped waveguide channel for different polarized chiral 

sources. 

Supplementary Note 7: Chirality (or directionality) map in domain B for 5 C   



From the Ez phase distributions of the helical waveguide modes, as presented in right panels of Fig.1b in 

the main text, we show that the large-area helical waveguide modes have inherent pseudospin-chirality 

locking property. The local chirality (or directionality)5 of the helical waveguide modes could be 

characterized by the Stokes parameters, which for the waveguide mode labeled by the red dot in Fig.S7a 

in domain B is given in Fig.S7b, from which one can see that the chirality (i.e., the direction of propagation) 

of these large-area helical waveguide modes depends on the location of the chiral source. The excited 

wave propagations of the large-area waveguide state with source at a,b,c are shown in Fig.S7c-e, from 

which one can clearly see that the propagation direction of the topological waveguide states can be solely 

controlled by the location of the chiral source.  

 

Figure S7 | Topological properties of the large-area helical waveguide modes in 5 C  . a Projected band structure of 5 C  . 

b Chirality (or directionality) map in domain B for mode labeled by the red dot. c-e Excitation of the helical waveguide mode using 

the same chiral source but at different locations labeled by black stars a, b, and c.    

 

Supplementary Note 8: Schematic of disorder and cavity defects used in the simulations and 

experiments for 5 C   

Figure S8a shows the simulated propagation of the topological waveguide modes in 5 C   against a 

disordered region in domain B, from which one can see that the propagation of the topological waveguide 

mode can pass through the disordered region without being backscattered, compared to the case without 

disorder. These simulation results have been successfully confirmed in experiments, where the disordered 

region in domain B is constructed by moving the lattice unit cells marked within the rectangle to the left, 

up and right away from their normal location by 0.04a ( see Fig.S8b-c). Figure S8d shows the simulated 

propagation of the topological waveguide modes in 5 C 
 

against an air cavity in domain B, from which 

one can see that though the existence of the air cavity along the propagation path, the topological 

waveguide modes can pass through it without being backscattered. The shape of the air cavity introduced 

in the simulations and experiments is shown in Fig.S8e-f. 



 

Figure S8 | Illustration of the disorder and defects used in the simulations and experiments for 5 C  . a Simulated wave 

propagation for the topological waveguide modes in 5 C  with disorder; bottom panel denotes the geometrical structure of the 

5 C   heterostructure with disorder. b, c Distributions of disorder in the simulations and experiments, respectively. d Simulated 

wave propagation in 5 C  with an air cavity; bottom panel denotes the geometrical structure of the 5 C   heterostructure with 

the air cavity. e, f Position of the air cavity in the simulations and experiments, respectively; right panel denotes the chiral source, 

which is composed by three antennas in the experiments. 

 

Supplementary Note 9: Large air cavity that breaks the unidirectional propagation of topological 

waveguide modes. 

In the main text, we show that the topological waveguide modes can tolerate much large defects due to 

their large mode width. However, one can expect that when the transverse size of the defect is comparable 

to the mode width, the topological property of unidirectional propagation will be broken. To demonstrate 

this, we study two large air defects shown in Fig.S9. From the results, one can see that the propagation of 

the unidirectionally launched wave is backscattered strongly, indicating the breakdown of the topological 

protection. Hence there exists a critical size of the air-cavity, below which the topological properties of 

the topological waveguide modes can persist. Figure S9b shows that the unidirectionally launched wave 

is more strongly scattered by C10, which indicates that the topological properties of the topological 

waveguide modes against such an air cavity are completely broken. It is worth noting that the large-area 

property of the waveguide modes is not destroyed. This is because bulk states in domain B with the 

double Dirac-cone dispersion are confined by two boundaries of the domain B.  

 
Figure S9 | Simulated propagations of the topological waveguide modes in 5 C  with two air cavities. A-C9 and b-C10.  

 

 



Supplementary Note 10: Poynting vector maps in domain B with air-cavities 

Figure S10a shows the Poynting vector map for a unidirectionally launched wave in 5 C  without any 

imperfections, from which one can see that the energy flows unidirectionally in domain B to the right. 

Figure S10b-d show the Poynting vector distributions in domain B with unidirectional propagations of the 

topological waveguide modes in a straight waveguide channel with air cavity defects. Figure S10e shows 

the Poynting vector distributions in a waveguide channel where the wave is completely backscattered by 

the air cavity, which indicates that topological properties of the topological waveguide modes are 

destroyed. Figure S10f-i show the Poynting vector distributions in cases where the unidirectionally 

launched wave can bypass the air cavity defects and the results also show that increasing the transverse 

size of the air cavity has a more significantly effect on the wave propagation than increasing the 

longitudinal size of the air cavity.  

 

 

 



 

 

 

 



 

 

Figure S10 | Poynting vector distributions of LPWSs against different air-cavities in domain B. a-i Poynting vector of LPWSs 

in 5 C  for different air-cavities, where pink arrows denote Poynting power flows, right panels are enlarged views marked as red 

rectangles.  

 

Supplementary Note 11: Applications of large-area topological waveguide modes 

  Apart from the topological channel intersection and topological energy concentrator presented in the 

main text, additional applications of the large-area topological waveguide mode, such as topological 

energy splitter and topological cavity with tunable mode confinement are demonstrated in Figs.S11(c-f). 



 

Figure S11 | Applications of large-area topological waveguide modes. a Schematic of a topological channel intersection. b 

Schematic of a topological energy concentrator. c, e Schematic and simulated result of a topological energy splitter. d, f Schematic 

and simulated result of a topological cavity with tunable mode confinement. 
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