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Supplementary Note 1: Tight-binding description of the photonic crystals
The photonic crystals considered in the main text could be described by a tight-binding (TB) Hamiltonian

defined on the honeycomb lattice, and we consider the hexagonal unit cell that contains six lattice sites,

Ho=—tO E CiCj —t, CiCjy
<i,j> <Ljs
wheret,t, > 0 represent the nearest-neighbor (NN) hopping strengths within and between the hexagonal

unit cells ', Moreover, to account for the change of R, one can introduce the next-next-nearest (NNN)
hopping term*

. R
H =, CiCj

<<<i, j>>>

Where t, represent the next-next-nearest (NNN) hopping strengths within the hexagonal unit cells.
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Figure S1 | Schematic of photonic crystals in graphene-like lattice and photonic band structures. a Schematic of photonic

crystals in graphene-like lattice, where aj and aj denote the lattice vectors with a the lattice constant. Red arrows among sites

2, 4, and 6 denote the next-next-nearest (NNN) hopping within the hexagonal unit cell. b Schematic of A‘BS‘C heterostructure. The
domains A, B and C are composed of different unit cells ( R =a/3,R,=a/35; R =a/3,R,=a/3; R =a/3,R,=a/2.65)
respectively. ¢ The photonic band structures for PhCs of the three domains shown in b. The bottom panel denotes the mode profiles

atl’ for p(d)andd ( p) states of trivial (nontrivial) PhCs. d Evolution of the band gap as a function of R, . The green and red

dotted lines represent p and d states, respectively.



Supplementary Note 2: Projected band structures along the wavevector k, for A|BX|C

Figure S2 shows the projected band structures of the heterostructure A[B,|C as a function of x from x = 0
(without the middle domain B) to x =11. Note that the dispersion curves of the topological waveguide
modes (red lines) gradually evolve into an “X” shape as x increases, whereas non-topological
waveguide modes (blue lines) gradually move from the bulk states (black regions) into the band gap but
in general are gapped (see Figure S2b-g). As a result, operational bandwidth of the topological waveguide
modes gradually decreases. This is because the coupling of the interface modes at A|B and B|C domain-
walls become weaker as x increases, and as such more and more non-topological waveguide modes
populate within the band gap. From Fig.S2, we can see that when x is small the coupling of the interface
modes at A|B and B|C domain-walls is strong, resulting in a wide gap marked by the light orange region
and when x is large, the coupling becomes weaker, i.e., the orange band gap becomes smaller, and more
non-topological waveguide modes (blue lines) from the bulk states gradually move into the bulk gap

marked by two dashed lines.
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Figure S2 | Projected band structures of A\BX\C for x=0, 1, 3, 5, 7,9 and 11. a-g Projected band structures, where black regions
denote bulk states and red lines denote the topological large-area helical waveguide modes, whereas blue lines denote non-

topological waveguide modes moving from bulk states into the band gap.

Supplementary Note3: Topological and non-topological waveguide modes in A|B5| C

The heterostructure can support both topological and non-topological waveguide modes (see the blue and
red dotted lines in Fig.S3a), however, their topological properties are very different, even though their
field profiles show similar feature, i.e., their fields are distributed uniformly in the middle domain B and
decay exponentially into domains A and C (see right panels of Fig. S3a, for the cases of non-topological
modes). To demonstrate that the blue waveguide modes do not have topological properties, we excite these
waveguide states using different polarized chiral sources, and the results in Figs. S3b-e show that they
propagate in both directions no matter with straight or Z-shaped waveguide channel, indicating the lack
of topological property with pseudospin-momentum-locking unidirectional propagations. In contrast, for
the red waveguide states, the results in Figs.S3f-g show that they can be excited (by a chiral source) and
propagate unidirectionally in the Z-shaped waveguide channel even with sharp bends, indicating the
existence of topological property of these modes, such as pseudospin-momentum-locking unidirectional

propagations and robustness against sharp bends.
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Figure S3 | Projected band structure of A[B;|C and its waveguide modes. a Projected band structure of A[B;|C (left), whereas
right two panels show the modes profiles ( ‘Ez‘ ) of the non-topological waveguide modes at different eigenfrequencies marked by
the green and yellow dots. b-e Excited non-topological waveguide states in A‘BS‘C with straight and Z-shaped waveguide channels
for different polarized chiral sources. f, g Excited topological waveguide modes in A‘BS‘C with Z-shaped waveguide channel for

different polarized chiral sources.
Supplementary Note 4: No topological waveguide modes in A|B5| A

It is crucial that the outer two domains A and C have different topological properties in order for the
heterostructure to support large-area pseudospin-momentum locking topological waveguide modes. To
demonstrate this, we further study the projected band diagram of A[B;|A , in which the two domains at each
side of the middle domain B are the same and thus have the same topological property, i.e., the difference
of their topological invariants across the middle domain is trivial. The projected band diagram of A[B;|A
is shown in Fig. S4a, from which one can clearly see that the helical waveguide states are absent, and
only gapped conventional waveguide states exist within the band gap. From the excited wave propagations
shown in Figs.S4b-c, one can see that these are indeed waveguide modes but without the topological

property of pseudospin-momentum locking unidirectional propagation.
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Figure S4 | Projected band structure of A‘BE‘A and its waveguide states. a Projected band structure of A‘BE‘A (left), whereas
right two panels denote mode profiles ( ‘EZ ‘ ) of the non-topological waveguide modes at different eigenfrequencies marked by the
green and yellow dots. b,¢ Excited non-topological waveguide states in a straight waveguide channel for different polarized chiral

sources.
Supplementary Note 5: Waveguide modes in C|BB|C

Similar results as A[B;[A are also obtained in C[B|C, see Fig.S5.
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Figure S5 | Projected band structure of C|B;|C and its waveguide states. a Projected band structure of C|B;|C (left), whereas
right two panels denote mode profiles ( ‘Ez ‘ ) of the non-topological waveguide modes at different eigenfrequencies marked by the

green and yellow dots. b, ¢ Excited non-topological waveguide states in a Z-shaped waveguide channel for different polarized chiral

sources.
Supplementary Note 6: Non-topological waveguide modes in A|air| C

To demonstrate that the middle domain B with gapless Dirac cone dispersion is also important for the
heterostructure to support large-area pseudospin-momentum locking topological waveguide modes, we
study the projected band diagram of Alair|C , where the middle domain B is replaced by air. From the result
shown in Fig.S6a, one can see that there is a pair of waveguides modes within the bandgap, which however
is different from those of (A[B,|C,C|B,|C, AB;|A ). Note that the field profiles of these modes are also
distributed mainly within the air and decay exponentially into domains A and C by checking the waveguide
modes labelled as green and yellow dots. However, from the excited wave propagations shown in
Figs.S6b-c, one can see that these are conventional waveguide states without any topological properties.
These results demonstrate that the large-area pseudospin-momentum locking topological waveguide
modes originate from the interplay of domains A and C with pseudospin band inversion and domain B
with gapless double Dirac-cone dispersion. In contrast to air, the presence of a gapless Dirac cone
dispersion in the middle domain is crucial, which allows the strong coupling and hybridization of the two

topological interface modes associated with A|B and B|C domain-walls.
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Figure S6 | Projected band structure of A\air\c and its waveguide states. a Projected band structure of A‘ail"c (left), whereas
right two panels denote mode profiles ( ‘EZ ‘ ) of the non-topological waveguide modes at different eigenfrequencies marked by the

green and yellow dots. b, ¢ Excited non-topological waveguide states in a Z-shaped waveguide channel for different polarized chiral

sources.

Supplementary Note 7: Chirality (or directionality) map in domain B for A|B,|C



From the Ez phase distributions of the helical waveguide modes, as presented in right panels of Fig.1b in
the main text, we show that the large-area helical waveguide modes have inherent pseudospin-chirality
locking property. The local chirality (or directionality)® of the helical waveguide modes could be
characterized by the Stokes parameters, which for the waveguide mode labeled by the red dot in Fig.S7a
in domain B is given in Fig.S7b, from which one can see that the chirality (i.e., the direction of propagation)
of these large-area helical waveguide modes depends on the location of the chiral source. The excited
wave propagations of the large-area waveguide state with source at a,b,c are shown in Fig.S7c-e, from
which one can clearly see that the propagation direction of the topological waveguide states can be solely

controlled by the location of the chiral source.
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Figure S7 | Topological properties of the large-area helical waveguide modes in A‘BS‘C . a Projected band structure of A‘BS‘C .
b Chirality (or directionality) map in domain B for mode labeled by the red dot. c-e Excitation of the helical waveguide mode using

the same chiral source but at different locations labeled by black stars a, b, and c.

Supplementary Note 8: Schematic of disorder and cavity defects used in the simulations and
experiments for A|B5| C

Figure S8a shows the simulated propagation of the topological waveguide modes in A|B,|C against a
disordered region in domain B, from which one can see that the propagation of the topological waveguide
mode can pass through the disordered region without being backscattered, compared to the case without
disorder. These simulation results have been successfully confirmed in experiments, where the disordered
region in domain B is constructed by moving the lattice unit cells marked within the rectangle to the left,
up and right away from their normal location by 0.04a ( see Fig.S8b-c). Figure S8d shows the simulated
propagation of the topological waveguide modes in A|B;|C against an air cavity in domain B, from which
one can see that though the existence of the air cavity along the propagation path, the topological
waveguide modes can pass through it without being backscattered. The shape of the air cavity introduced

in the simulations and experiments is shown in Fig.S8e-f.
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Figure S8 | Illustration of the disorder and defects used in the simulations and experiments for A‘Bs‘C . a Simulated wave
propagation for the topological waveguide modes in A‘BS‘C with disorder; bottom panel denotes the geometrical structure of the
A‘BS‘C heterostructure with disorder. b, ¢ Distributions of disorder in the simulations and experiments, respectively. d Simulated
wave propagation in A‘BS‘C with an air cavity; bottom panel denotes the geometrical structure of the A‘Bs‘C heterostructure with
the air cavity. e, f Position of the air cavity in the simulations and experiments, respectively; right panel denotes the chiral source,

which is composed by three antennas in the experiments.

Supplementary Note 9: Large air cavity that breaks the unidirectional propagation of topological
waveguide modes.

In the main text, we show that the topological waveguide modes can tolerate much large defects due to
their large mode width. However, one can expect that when the transverse size of the defect is comparable
to the mode width, the topological property of unidirectional propagation will be broken. To demonstrate
this, we study two large air defects shown in Fig.S9. From the results, one can see that the propagation of
the unidirectionally launched wave is backscattered strongly, indicating the breakdown of the topological
protection. Hence there exists a critical size of the air-cavity, below which the topological properties of
the topological waveguide modes can persist. Figure S9b shows that the unidirectionally launched wave
is more strongly scattered by C10, which indicates that the topological properties of the topological
waveguide modes against such an air cavity are completely broken. It is worth noting that the large-area
property of the waveguide modes is not destroyed. This is because bulk states in domain B with the
double Dirac-cone dispersion are confined by two boundaries of the domain B.

(a) (b)

Figure S9 | Simulated propagations of the topological waveguide modes in A‘BS‘C with two air cavities. A-C9 and b-C10.



Figure S10a shows the Poynting vector map for a unidirectionally launched wave in AB;|C without any
imperfections, from which one can see that the energy flows unidirectionally in domain B to the right.
Figure S10b-d show the Poynting vector distributions in domain B with unidirectional propagations of the
topological waveguide modes in a straight waveguide channel with air cavity defects. Figure S10e shows
the Poynting vector distributions in a waveguide channel where the wave is completely backscattered by
which indicates that topological properties of the topological waveguide modes are

f-i show the Poynting vector distributions in cases where the unidirectionally

launched wave can bypass the air cavity defects and the results also show that increasing the transverse
size of the air cavity has a more significantly effect on the wave propagation than increasing the

Supplementary Note 10: Poynting vector maps in domain B with air-cavities
longitudinal size of the air cavity.

destroyed. Figure S10

the air cavity,
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Figure S10 | Poynting vector distributions of LPWSs against different air-cavities in domain B. a-i Poynting vector of LPWSs

in A‘B5 ‘ C for different air-cavities, where pink arrows denote Poynting power flows, right panels are enlarged views marked as red

rectangles.

Applications of large-area topological waveguide modes

Supplementary Note 11

Apart from the topological channel intersection and topological energy concentrator presented in the

additional applications of the large-area topological waveguide mode, such as topological

]

main text

energy splitter and topological cavity with tunable mode confinement are demonstrated in Figs.S11(c-f).
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Figure S11 | Applications of large-area topological waveguide modes. a Schematic of a topological channel intersection. b

Schematic of a topological energy concentrator. ¢, e Schematic and simulated result of a topological energy splitter. d, f Schematic

and simulated result of a topological cavity with tunable mode confinement.
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